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Outline of the talk

The main thesis of this talk: while calculating wakefields of very
short bunches is a challenging computational problem, using
approximations that take into account the smallness of σz can
greatly facilitate the job and add additional insight into the physics
of wakefields.
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Optical model

Parabolic equation (PE) for calculation of wakefields

Scaling properties of the impedance in PE

Combining computer simulations and analytic wakes
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Motivation: short bunches

RMS bunch lengths in future lepton accelerators

PEP-X 5 mm

CEPC 3 mm

TLEP-W 2.2 mm

ILC 300 µm

LCLS-II 1000, 270, 25 µm

Calculation of wakefields is more difficult for long, small-angle
tapers.

The difficulty is associated with a small parameter σz/b, where b
is the typical size of the structure that generates the impedance
(say, iris radius in RF cavity). On the other hand the small
parameter allows us to develop approximate analytical theories and
use them for numerical calculations.
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Catch-up distance is important for short bunches

s

a

z

• If head particle passes e.g. the
beginning of a cavity, tail particle
doesn’t know it until
z = lc−u ∼ a2/2s (a beam pipe
radius, s separation of particles)
later. If a = 3.5 cm and s = 25 µm,
then z ≈ 25 m.

Hence, the steady state wake develops over the distance lc−u,
which can also be called the formation length of the wake.
• Transient region: there will be a transient regime before
steady-state is reached; for Gaussian with length σz, transient will
last until z ∼ a2/2σz.
• Wake is typically taken to act instantaneously. If the catch-up
distance is not small compared to the betatron wavelength, the
usual approach to collective beam dynamics should be modified.
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Optical approximation

The wake in bunch of length σz is formed by wavelengths k ∼ 1/σz.

In electromagnetic theory the
limit k→ ∞ corresponds to
geometrical optics (the
wavelength is much smaller than
the size of the objects). Hence in
the limit σz → 0 there should be
an analog of optical theory for
wakefields.

A general theory of wakefields in optical approximation was
developed in1. The advantage of this approach is that it allows to
easily calculate the wakes for even 3D, non-axisymmetric
geometries. This method works well if there are protrusions or
sharp transitions in the vacuum chamber.

1
Stupakov, Bane, Zagorodnov, PRST-AB 10, 054401 (2007); Bane, Stupakov, Zagorodnov, PRST-AB 10,

074401 (2007).
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Impedance and wake in optical approximation
In the optical regime:
Z‖ is real and independent of fre-

quency; wake of a point charge w‖ ∝
δ(z) and wake of a bunch with distribu-
tion λ(z):

W‖(z) ∝ λ(z)

Z⊥ is also real and depends on fre-

quency as ω−1; point charge wake w⊥ ∝
h(z), and wake of bunch distribution is

W⊥(z) ∝
∫z
λ(z ′)dz ′ The longitudinal impedance of a

step transition does not depend on
ω at high frequencies.

(Figure from 2).

2
Heifets, Kheifets, RMP, 63, 631, 1991.
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More Complicated Transitions

X1: misaligned flat beam pipes 

2(g+∆y)
z2g
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X2: LCLS type rectangular-to-round transition           
                                     

2w
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Cases considered:

misaligned flat beam pipes

LCLS rectangular-to-round
transition

Cross-section view (left) and longitu-
dinal view (right) of rectangular-to-
round transition.

z

y

−x

A pair of LCLS transitions in perspec-
tive view.
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Limitations of the optical model

The optical theory ignores diffraction effects. It predicts zero
impedance for the pillbox cavity or periodic irises; the wake in
these cases in the limit ω→ ∞ is due to diffraction.

Pillbox cavity. Diffraction theory
gives

Z‖(k) =
Z0(1+ i)

2π3/2

√
L

ka2

Periodic structure with thin irises
(Z‖ per unit length)

Z‖(k) =
iZ0

πka2

×
(
1+ 0.46(1+ i)

√
πp

ka2

)−1/2
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Limiting value of wake for very short bunches

• Because the limit of high frequencies corresponds to small
distances, we can infer the wake of a point charge at short distance
behind it. For infinitely long cylindrically symmetric disk-loaded
accelerator structure, the steady-state wakes at the origin is

w‖(s) ≈
Z0c

πa2
, w⊥(s) =

2Z0c

πa4
s, s� s0

• This is also true for a resistive pipe (a is the pipe radius), a pipe
with small periodic corrugations, and a dielectric tube within a
pipe; it appears to be a general property 3.

3
S.S. Baturin and A.D. Kanareykin, arXiv:1308.6228 [physics.acc-ph] (2014).
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Parabolic equation

The parabolic equation is used:

In diffraction theory. Proposed by M. A. Leontovich in 1944.
Applied to various diffraction problems by V. Fock in 40-50.

In the FEL theory.

To compute synchrotron radiation of relativistic particles in
toroidal pipe4.

Synchrotron radiation of relativistic particles can be treated using
the parabolic equation 5.

4
Stupakov, Kotelnikov, PRST-AB 6, 034401 (2003); Agoh, Yokoya, PRST-AB 7, 054403 (2004).

5
Geloni et al., DESY Report 05-032, (2005).
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Parabolic equation

The Fourier transformed electric field Ê and the longitudinal component
of the current ĵs are written with the additional factor e−iks:

Ê(x, y, s,ω) = e−iks
∫∞
−∞ dt e

iωt E(x, y, s, t)

ĵs(x, y, s,ω) = e−iks
∫∞
−∞ dt e

iωt js(x, y, s, t)

where k ≡ ω/c. One also introduces the transverse component of the
electric field Ê⊥ as a two-dimensional vector Ê⊥ = (Êx, Êy), and the
longitudinal component of the electric field Ês.

It is assumed that Ê⊥ ĵs are “slow” functions of s, such that ∂/∂s� k.
It means that we are interested in components of the field propagating in
the positive direction of s at small angles to the axis. In particular, we
neglect a part of the field propagating in the negative direction of s.
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Parabolic equation

From the wave equation for the field it follows that 6

∂

∂s
Ê⊥ =

i

2k

(
∇2⊥Ê⊥ +

2k2x

R
Ê⊥ −

4π

c
∇⊥ ĵs

)
where ∇⊥ = (∂/∂x, ∂/∂y), R is the radius of curvature (for a straight
pipe R−1 → 0, s→ z). The longitudinal electric field can be expressed
through the transverse one and the current

Ês =
i

k

(
∇⊥ · Ê⊥ −

4π

c
ĵs

)
A remarkable feature of this equation is that Ê⊥ varies in s over the
distance much larger than λ = k−1.
In contrast to the optical approximation PE takes into account diffraction
effects (the pillbox impedance is derivable from PE). It is valid for high
frequencies, and especially good for small-angle transitions.

6
G. Stupakov, New Journal of Physics 8, 280 (2006); G. Stupakov, Reviews of Accelerator Science and

Technology 3, 3956 (2010).
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Impedance scaling in PE

Analysis shows that the longitudinal impedance ZL(ω) in a small-angle
geometry (3D, in general), with characteristic length L in z-direction is

ZL(ω) = F
(ω
L

)
Compute impedance for a short structure, Z 1

n
L, and use the scaling law

ZL(ω) = ZL/n

(ω
n

)
Translating the impedance into the longitudinal wake we find

wL,σz
(s) = nwL/n,nσz

(ns)

For the transverse wake

w
(t)
L,σz

(s) = w
(t)
L/n,nσz

(ns)

The computational time in 2D reduces by n3.
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Practical example of using the scaling property

The nominal LCLS-II bunch length is σz = 25 µm. The beam is
accelerated in SC RF cavities, with a cryomodule housing 8
nine-cell cavities. The length of the cryomodule is ∼12 m. It is
important to calculate the cavity heating due to the energy
deposited by the beam through the wakefield.
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Practical example of using the scaling property

One wake was calculated with σz = 25 µm for two cryomodules
(3.5 days run time), the other was calculated for σz = 200 µm in
the cryomodule geometry shrunk 8 times longitudinally (40 min
run time).
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Real geometry (left) and scaled geometry (right).
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Practical example of using the scaling property

Surprisingly, the scaling works very well for the cavities.

wL(s) = 8w 1
8
L (8s)
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After rescaling the results agree very well!
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Combining computer simulations with analytics

Recently7 a method was suggested to calculate short bunch
wake-potentials, and even point-charge wakefields, running an EM
solver for a relatively long bunch. This approach can save greatly
on calculation speed and provides physics insights.

The idea behind the method is to use a combination of computer
simulations with an analytical form of the wakefield for a given
geometry in the limit σz → 0.

7
Podobedov, Stupakov, PRST-AB 16, 024401 (2013)
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Basic idea illustrated on step-out transition

Consider a particular example of the wake-potential of a short
bunch passing through a step-out transition from radius rmin to
rmax.

The plot of the wake-potential Wσ(z) in this case, for several
values of σ, is shown. With decreasing σ, the wake-potential
becomes larger inside the bunch; in the limit σ→ 0, it diverges as
1/σ. The singular part of the wake in the limit σ→ 0 is provided
by the optical model.
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Basic idea

In the limit σ→ 0 the optical model gives

Wδ
s (z) = −

Z0c

π
δ(z) ln

rmax

rmin
, Wσ

s = −
Z0c

21/2π3/2σ
ln
rmax

rmin
e−z

2/2σ2

Subtracting it from the wake we introduce the difference

Dσ(z) =Wσ(z) −Wσ
s

When σ→ 0 this function
approaches a well defined limit
shown by the solid line. We
denote this limit by Dδ(z),
Dδ(z) = limσ→0Dσ(z).

Plot of Dσ(z)
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Basic idea

In the vicinity of point z = 0 Dδ can be approximated

Dδ(z) ≈ (α+ βz)h(z),

where H(z) is the step function (h = 1 for z > 0 and h = 0
otherwise). Then

Dσ(z) =

∫
dz ′λ(z+ z ′)Dδ(z ′)

=
α+ βz

2

(
1+ erf

(
z√
2σ

))
+
βσ√
2π
e−z

2/2σ2

The crucial element of the method is that α and β can be
obtained from simulations running a relatively long bunch through
the system and fitting to the formula above.
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Basic idea

Comparing this with the simulated Dσ(z) in the region z < 3σ one
can find the parameters α and β and thus to establish the
dependence of Dδ(z) in this region. After Dδ(z) is found, we have
the wakefield of the point charge

Wδ(z) =Wδ
s +D

δ(z),

[note that Wδ
s is a delta-function].

The particular form of the singular part of the wake-potential, Wδ
s ,

is determined by the high-frequency limit of the impedance for a
given geometry; in most cases it can be found in the literature.
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Practical example: NSLS-II Landau cavity

•1.5 GHz dual cell cavity, rside pipe = 6
cm
•Final results for the short-range wakes:

To find 10 µm bunch wake:
Brute force: 480 hours of
Intel(R) Xeon(R) 5570@2.93
Ghz CPU to zmax = 1 cm.
Our method: uses only
σ = 50 µm bunch, saves a
factor of 53 on CPU time
and 52 on memory. Gives a
model of the point-charge
wake as a bonus.
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Conclusions

For large and smooth accelerator structures, and short
bunches, direct EM solver calculations can be extremely time
and memory-consuming. Using approximate methods that
employ small geometric parameters in the problem greatly
facilitates the numerical solution.

Optical approximation and parabolic equation are the new
approaches that try to address the issue of wakefield for very
short bunches.

A new method that combines a (processed) long-bunch wake
from an EM solver and a singular analytical wake model
allows one to accurately obtain wakefields of short bunches,
including that of a point-charge.
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Discussion

High-repetition superconducting linacs add a new dimension to the
problem of wakefields. The EM energy released by electron bunches
is eventually deposited somewhere inside the vacuum chamber.
The goal is to reliably calculate to where this energy goes.
Two issues:

Tracing propagation of high-frequency EM waves inside the
linac is a very difficult problem.
A large fraction of this energy is at relatively low frequencies.
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We think that the most
promising approach is based on
using S-matrix formalism and
working in frequency domain (K.
Bane’s talk this morning).
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Estimate of power from the LCLS-II BC2

Steady state CSR model:

PCSR = κCSRLQ
2frep

with

κCSR = 0.76
Z0c

2 · 34/3π
1

ρ2/3σ
4/3
z

The last magnet of BC2. Shielding is not important. Estimated
radiation power: Q = 300 pC, repetition rate frep = 1 MHz.

E [GeV] 1.6
L [m] 0.55
ρ [m] 10.2
σz [µm] 24
PCSR [W] 48.5

The steady-state model is valid if L� `:

` = (24σzρ
2)1/3 ≈ 40 cm
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Contribution from space after the magnet

M. Dohlus: the beam keeps loosing energy after exiting the bend.
Calculation for CSR in free space:
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Contribution from space after the magnet

These are calculations without shielding. If one assumes v = c, the
radiated energy slowly grows to ∞ as z→ ∞. Accounting for
finite (but large γ) would limit the growth by ∼ lnγ. However the
shielding would also become important here, ∼ ln rpipe/σz.
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I have a code which computes the CSR wakefield in a bend in a
rectangular vacuum chamber (PRST-AB,2009).

A vacuum chamber was assumed with full vertical gap 2h = 3.2
cm, and the full horizontal gap 9.6 cm.
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The beam radiates 113 µJ energy (113 W).
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Discussion

About 120 W will be radiated from the last bend of BC2
(Q = 300 pC, frep = 1 MHz).

The linac L3 is about 60 m downstream BC2 with the cross
section of the vacuum chamber changing from ∼ rectangular
to round. What happens with this radiation as it propagates
downstream? How much of it enters the SC linac? Can we
(partially?) shield the linac from the radiation?

Brute force simulation of propagation of this radiation
downstream of BC2 may be prohibitively slow. Analysis that
utilizes some kind of short-wavelength approximation (optical
or diffraction models) might be more appropriate.
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